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In this paper we consider the diffraction of waves by a sharp edge in three-dimensional
flow with non-zero mean vorticity. This is an extension of the famous Sommerfeld
problem of the diffraction of waves by a sharp edge in quiescent conditions. The
precise problem concerns an infinitely long annular circular cylinder, which contains
a concentric semi-infinite circular cylinder which acts as a splitter. The mean flow
has both axial and swirl components, and cases in which the splitter is arranged with
either a leading edge or a trailing edge relative to the axial flow are considered. This is
a model of a number of practical situations in the aeroengine context. We treat both
sonic and nearly-convected incident disturbances, and two regimes are considered;
one in which the azimuthal order, m, of the incident waves is O(1), and a second
in which m � 1. A solution for m =O(1) in the case of rigid-body swirl is found
using the Wiener–Hopf technique, and special care is needed to handle the infinite
accumulation of scattered nearly-convected modes which results from the presence of
the mean vorticity. Simplification in the limit m � 1 then allows us to consider more
general swirl distributions. A number of effects arise due to the presence of mean
vorticity. This includes the generation of sound at a trailing edge due to the scattering
of a nearly-convected disturbance, which is to be contrasted with the way in which a
convected gust passes a trailing edge silently in uniform mean flow.

1. Introduction
Problems of wave scattering by rigid surfaces are of considerable interest in

acoustics. One of the most famous canonical problems in wave theory is due to
Sommerfeld and concerns the diffraction of a wave by a sharp edge, with the dis-
turbance field satisfying the simple scalar Helmholtz equation with rigid boundary
conditions on the semi-infinite plate. A range of extensions to this problem have
been completed over the years, but we mention in particular here extensions in two
distinct directions. First, Goldstein (1978a, 1979) considered the edge to be embedded
in an infinite two-dimensional parallel shear flow. Second, Rawlins (1995) considered
the three-dimensional axisymmetric problem of sound radiation from a semi-infinite
cylinder inside a co-axial infinite cylinder, in zero flow. Related to this, the trifurcated-
waveguide problem with wall lining in two dimensions was considered by Mahmoud-
Ul-Hassan & Rawlins (1999), and with uniform mean flow by Mahmoud-Ul-Hassan &
Rawlins (1998). In this paper we seek to combine these approaches by considering
several scattering problems in the geometry of a cylindrical duct carrying vortical
mean flow.
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The precise problem we consider concerns an infinitely long annular circular
cylinder, which contains a concentric semi-infinite circular cylinder which acts as
a splitter (see figure 1). The mean flow has both axial and swirl components, and
cases in which the splitter is arranged with either a leading edge or a trailing edge
relative to the axial flow are considered. This is a model of a number of practical
situations in the aeroengine context. For instance, the inter-stage region between the
fan and the outlet guide vanes bifurcates into the engine core (inner) and bypass-duct
(outer) flows. Here one is interested in the way in which engine core noise is diffracted
at this bifurcation, and might therefore escape to the far field via the bypass duct.
Since the mean flow in this region is strongly swirling, the inclusion of the effects of
mean vorticity is an important feature of our model. Another possible application, this
time in which the lip of the bifurcation acts as a trailing edge, is to coaxial injectors
in combustion system, where mean swirl may be included to enhance mixing.

The presence of mean vorticity couples the familiar, and otherwise uncoupled,
acoustic and vorticity modes of a fluid system. Instead of two distinct mode types,
one irrotational, the other incompressible and with zero pressure (i.e. noiseless), we
have a single spectrum which contains two distinct families of modes. Analogously
termed sonic and nearly-convected, the former have small vorticity and the latter small
divergence and pressure. Early work on the modes of swirling flow in a duct was
completed by Kerrebrock (1977), and more recently by Golubev & Atassi (1998) and
Tam & Auriault (1998). The flow considered in these papers, and also here, is one with
mean axial and swirling (azimuthal) velocity components which depend only on the
radial coordinate r . In general, finding the combined spectrum of acoustic–vorticity
modes for such a problem is difficult. In particular, after Fourier decomposing the
unsteady small perturbation in axial coordinate x and time t , and assuming fixed
azimuthal mode order (i.e. unsteady perturbation proportional to exp(imθ), with θ the
azimuthal angle) the resulting ordinary differential equation in r has a singular point,
or critical layer. The critical layer occurs precisely where the convected derivative
with respect to the mean flow vanishes and, given the r dependence of the mean
flow, exists for a range of axial wavenumbers, k. This implies that there is a branch
cut in the Fourier transform of the disturbance or, equivalently, a continuous portion
of the eigenvalue spectrum of k-wavenumbers. Another complication associated with
the critical layer is that we tend to see clustering of discrete k-modes at the ends of
the continuous portion of the spectrum. Indeed, an accumulation of infinitely many
modes can occur, which is difficult to analyse or compute numerically. Examples of
several calculated spectra of acoustic–vorticity modes showing these features, and also
the sonic modes, are given by Golubev & Atassi (1998). The difficulty in resolving
the eigenmodes and eigenvalues with sufficient accuracy in the nearly-convected part
of the spectrum is such that some recent work has instead looked at the axial
development of the flow from the point of view of an initial-value problem, see
for instance Golubev & Atassi (2000) and Cooper & Peake (2005). In this paper
we first consider the case in which the axial mean flow is uniform and the swirl is
solid-body rotation. In this case the continuous spectrum is degenerate and reduces
to a single point, and the nearly-convected spectrum is composed of an infinity of
discrete modes which accumulate towards the wavenumber of pure convection. We
then use asymptotic analysis in the (practically realistic) limit of large m, together
with the initial-value approach mentioned above, to cover cases with more general
mean flows.

The Wiener–Hopf technique is employed to obtain solutions to the various scattering
problems in the form of a modal description of the scattered field. The infinite tails
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Figure 1. The geometry of the annular axisymmetric duct and splitter. The mean flow has an
axial component (from left to right in the leading-edge configuration considered in § 2.3), plus
a swirling (azimuthal) component.

of the nearly-convected and sonic parts of the spectrum are considered carefully,
which then allows truncation of the resulting infinite sums of modal contributions
and easy computation. In particular, the amplitudes of the cut-on waves propagating
away from the edge can be found with very little effort. An alternative approach has
been used by Nijboer (2003), who neglects the nearly-convected part of the spectrum
and performs mode matching on the sonic modes. Nijboer expands the scattered
field in terms of a large number of sonic modes in each of the three regions, and
the unknown amplitudes are determined by insisting that pressure and velocity are
suitably continuous across the edge cross-sectional plane x = 0. We will see that for the
scattering of sound waves at a leading edge, and provided that the azimuthal order m

is large, neglect of the nearly-convected part of the spectrum is reasonable. However,
for more general cases, involving incident nearly-convected disturbances, or scattering
by a trailing edge, or for m = O(1), the sort of exact (§ § 2,3) or rational-asymptotic
(§ 4) analysis we present here is required.

The remainder of this paper is set out as follows. In § 2 the modal structure in
an infinite duct for rigid-body swirl is reviewed, and the solution for scattering by a
leading-edge geometry is presented. In § 3 we repeat this analysis for a trailing-edge
geometry. In § 4 we then go on to consider the large-m limit for a more general mean
flow; the necessary results from Cooper & Peake (2005) are reviewed, and we then
consider scattering of sonic and nearly-convected disturbances by leading and trailing
edges. Concluding remarks are presented in § 5.

2. Scattering at a leading edge in rigid-body swirl
2.1. Formulation of problem

The geometry of the flow is shown in figure 1, and comprises an axisymmetric annular
cylindrical duct h � r � 1 of infinite length, with r the radial coordinate, and with a
coaxial semi-infinite rigid splitter of zero thickness on r = s, x > 0 (with x the axial
coordinate). Throughout lengths are non-dimensionalized by the outer radius of the
duct, densities by the mean density at r = 1, and velocities by the speed of sound at
r = 1. The total fluid velocity, U tot, has the form of a uniform axial plus solid-body
swirl mean flow with a small-amplitude unsteady disturbance,

U tot(x, r, θ, t) = U0(r) + u′(x, r, θ, t) (2.1)

where U0(r) = Uex + Ωreθ , θ is the azimuthal angle and t is the non-dimensional
time. We assume that the mean flow and the perturbation are homentropic.
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The disturbance field is decomposed in the way proposed by Goldstein (1978b) as

u′ = u + ∇φ, (2.2)

and the unsteady potential φ is chosen so that the unsteady pressure, p′, is given
solely in terms of φ, i.e.

p′ = −ρ0

D0φ

Dt
, (2.3)

where ρ0 is the local mean density and D0/Dt is the mean-flow Lagrangian derivative.
The equations of momentum and mass conservation then become

D0u
Dt

+ u · ∇U0 = −ξ 0 ∧ ∇φ, (2.4)

D0

Dt

1

c2
0

D0φ

Dt
− 1

ρ0

∇ · (ρ0∇φ) =
1

ρ0

∇ · (ρ0u) (2.5)

respectively, where ξ 0 = 2Ωex is the vorticity of the mean flow. The boundary
conditions for (2.4) and (2.5) are zero normal (i.e. radial) flow on all the walls,
together with the requirements of continuity of pressure throughout the fluid and
outgoing scattered waves upstream and downstream. It is clear that the presence of
mean vorticity, ξ 0 �= 0, couples the two portions of the unsteady velocity together, so
that in particular the unsteady vorticity is coupled to the unsteady pressure.

2.2. Duct modes

Before considering the semi-infinite geometry described in figure 1, we must first seek
a modal solution to the problem of an infinite annular duct with rigid inner and outer
walls at (for generality) r = σ, t . We therefore write

φ = φ(r)eikx+imθ−iωt , u = u(r)eikx+imθ−iωt , (2.6)

and we will suppose that the frequency ω and the azimuthal mode order m are given,
while the axial wavenumber k will be found below as the solution of an eigenvalue
problem. After some manipulation of (2.4) and (2.5), the mode-shape equation in this
case is found to be[

φ′′ +

(
1

r
+

Ω2r

c2
0

)
φ′ − m2

r2
φ

]
Λ2

Λ2 − 4Ω2
+

[
Λ2

c2
0

− k2 +
2mΩ3Λ

c2
0(Λ

2 − 4Ω2)

]
φ = 0, (2.7)

where the prime denotes differentiation with respect to r . The mean local sound
speed, c0(r), is given by

c2
0 = 1 + (γ − 1)Ω2(r2 − 1)/2, (2.8)

where γ is the ratio of specific heats and

Λ(k) = kU − ω + mΩ ≡ U (k − kc) (2.9)

corresponds to the convective operator D0/Dt , with kc the convected wavenumber
for which Λ = 0. We note in passing that (2.7) is an example of Keldysh polynomial
operator pencils, see Yakubov (1994) for a pure-mathematical discussion. Note that Λ

and kc are independent of r for uniform axial flow with rigid-body swirl, and so there
is no single critical radius at which the coefficient of the highest derivative in (2.7)
vanishes. The only possible singular point of (2.7) occurs for pure convection, k = kc,
for which the coefficient of the highest derivative term φ′′ vanishes for all r . In this
case the equations need to be treated with a little care. However, by combining the
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Figure 2. (a) A typical axial wavenumber spectrum for Ω = 0.4, U =0.4, ω =10,m= 3 with
duct 0.5 � r � 1 and (b) a close-up near k = kc . Cross symbols represent exact numerical values
and circles represent the asymptotic eigenvalues given by (2.11). For the modes shown n ranges
from 23 to 70.

equations of mass and momentum conservation and setting k = kc we find that a non-
zero exactly convected disturbance is only possible in the special case ω =mΩ, k = 0,
or when Ω = 0 (this latter point will be important when considering the existence or
otherwise of a wake sheet downstream of a trailing edge, see § 3). In general, the total
unsteady velocity and unsteady pressure associated with the k = kc mode are zero.

The boundary condition of zero radial velocity on the hard walls becomes

ur +
∂φ

∂r
=

Λ (Λφ′ + 2Ωmφ/r)

Λ2 − 4Ω2
= 0 on r = σ, t. (2.10)

The nonlinear dependence of (2.7) on the eigenvalue, k, signifies that this is not
a Sturm–Liouville eigenvalue problem, and one consequence of this is that the
eigenmodes are not orthogonal. We will return to this point in § 5. Equation (2.7)
with boundary condition (2.10) is integrated numerically using a standard variable-
step-size routine. The eigenvalue was found by shooting, starting from the inner wall
and then varying k until the boundary condition on the outer wall is satisfied. A
typical eigenvalue spectrum is shown in figure 2(a). It is composed of a sonic family
(analogous to the acoustic modes of uniform flow) of which four are cut-on and
an infinite number are cut-off, and a nearly-convected family comprising an infinite
number of discrete neutral modes which cluster on either side of the convected
wavenumber k = kc (in uniform flow these nearly-convected modes all collapse onto
the point of pure convection).
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For the scattering problems to be considered later, we will need an analytical
description of both the modes close to k = kc and the high-order cut-off sonic modes.
Turning first to the nearly-convected modes, for 0 <Λ2 � 1 we can perform a multiple
scales analysis similar to that of Golubev & Atassi (1998), and standard methods
yield expressions for the wavenumbers and the mode shapes. After some algebra, it
follows that the axial eigenvalues close to k = kc are

k − kc =
2Ωkc(t − σ )

Unπ

(
1 − R(t, σ )

nπ

)
+ O(1/n3), (2.11)

where n is an integer labelling the modes (with n> 0 and n< 0 corresponding to
k > kc and k < kc respectively, and |n| increasing corresponding to moving closer to
Λ =0), and

R(t, σ ) = −tan−1

(
mkc(t − σ )

m2 + σ tk2
c

)
− m

kc(γ − 1)α
tan−1

(
t − σ

α + σ t/α

)
− 2Ω(t − σ )

U
(2.12)

where α2 = 2/{(γ − 1)Ω2} − 1. The corresponding eigenfunction mode shape is

φ(r) =
1√

rρ0(r)
sin

(
nπr

t − σ
+ ψ0

)
+ O(1/n), (2.13)

where the complicated expression for the O(1) phase shift ψ0 has been obtained but
is omitted for brevity. Figure 2(b) shows a close-up of the clustering near kc, with
good agreement between the numerical and asymptotic eigenvalues as the convected
wavenumber is approached. Good agreement between numerical and asymptotic
mode shapes has also been found.

Turning now to the infinite cut-off tails of the sonic part of the spectrum, a
WKB solution for large |k| can be used to obtain leading-order expressions for these
eigenvalues in the form

k = an + b + O(n−1), (2.14)

where n → ±∞ is an integer labelling the modes in the upper/lower half-planes
respectively. For the more general mean flow U0(r) = Ux(r)ex + Uθ (r)eθ to be used in
§ 4, of which the current mean flow is a special case, we find

a = iπ

(∫ t

σ

√
1 − U 2

x (r)/c2
0(r) dr

)−1

, (2.15)

b = a

(
1

iπ

∫ t

σ

Ux(mUθ/r − ω)

c2
0

√
1 − U 2

x /c2
0

dr − n
±
3

)
, (2.16)

where n
±
3 are integers which simply shift the index of the infinite sequences and are

determined by, for example, choosing to start counting the sonic eigenvalues from
n= ±1. Expressions for the corresponding eigenmodes have also been determined,
and in all cases good agreement has been found with numerically determined values.

In what follows the eigenvalues and eigenmodes of the infinite ducts are labelled
by µ, the entire spectrum corresponding to the set of labels S, say. We also define
some subsets of S for convenience: let S+

a correspond to the downstream modes in
the sonic part of the spectrum (i.e. cut-on modes propagating downstream and an
infinite tail of evanescent waves which decay in the downstream direction); S−

a to the
upstream modes in the sonic part of the spectrum; and Sc to the nearly-convected
portion of the spectrum (which has two infinite tails near k = kc, which all propagate
downstream). It follows that S = S+

a

⋃
S−

a

⋃
Sc.
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In summary, we have presented an analytical description of the infinite tails of both
the nearly-convected and sonic parts of the spectrum, and this will be crucial in the
next subsection when we come to sum the contributions from these modes.

2.3. The Wiener–Hopf problem

We now wish to apply the Wiener–Hopf technique (see Noble 1958) to the problem
of the scattering of unsteady flow by the leading edge of the splitter plate r = s as
seen in figure 1. We begin by writing the unsteady potential, for given ω and m, in
the form

φ = ψtot(x, r)eimθ−iωt . (2.17)

The full-range Fourier transform in the x-direction is defined by

f̂ (α) =

∫ ∞

−∞
f (x)e−iαx dx, (2.18)

and then the transform ψ̂ tot(k, r) satisfies (2.7). We write the total unsteady potential
as the sum of a given incident component, ψinc, and a scattered component, ψ , so that
ψtot = ψ + ψinc, and in order to cover all possible forms of incident field (i.e. acoustic
waves from upstream or downstream, or nearly-convected waves from upstream) we
write ψinc = R + L, where R are right-running eigenmodes incident from region III
(i.e. upstream, see figure 1), and L are left-running eigenmodes incident from regions
I or II (i.e. downstream).

The boundary conditions are zero radial flow on the duct walls and on the splitter,
while within the fluid the pressure and velocity are continuous. In particular, the
conditions at the splitter radius are that

(u + ∇φ) · er = 0 on r = s, x > 0, (2.19)

and that p′ is continuous across r = s, x < 0. Also there is the causality/radiation
condition that ψ is composed of outgoing waves at infinity. This latter condition will
be satisfied by introducing a small fictitious dissipation, 0 < Im(ω) � 1, as is standard
in Wiener–Hopf problems, which can then be set to zero at the end of the analysis.
Note that this rigid-body flow is stable for all values of U, Ω , as follows directly from
equation (3.6) of Lalas (1975).

To start, we let Qh(r, k) and Qt (r, k) be the solutions of (2.7) which satisfy the
zero-radial-velocity condition (2.10) such that

(Λ(k)∂/∂r + 2Ωm/r)Q = 0 (2.20)

at r = h, 1 respectively, but with the right-hand side of (2.20) equal to 1 at r = s in
both cases. Note that Qh,t must be evaluated numerically, and closed-form solutions
are not available. By using (2.20) and the fact that the radial velocity is continuous
everywhere (including across the splitter, where it is zero) we find

ψ̂(r, k) =

{
A(k)Qh(r, k), h < r < s

A(k)Qt (r, k), s < r < 1
(2.21)

for some unknown A(k). Fourier transforming (2.19), gives

0 = A(k)
Λ(k)

Λ(k)2 − 4Ω2
− F+(k) + R−(k), (2.22)
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where R−(k) is a half-range Fourier transform of the radial velocity of the incident
field on r = s,

R−(k) =

∫ ∞

0

e−ikx(uinc + ∇φinc) · er |r=s dx, (2.23)

and F+(k) is a half-range Fourier transform of the radial velocity of the scattered
field on r = s,

F+(k) =

∫ 0

−∞
e−ikx(u + ∇φ) · er |r=s dx. (2.24)

The condition of continuity of pressure across r = s for x < 0 gives

0 = Λ(k)A(k) (Qt (s, k) − Qh(s, k)) − P−(k) + L+(k), (2.25)

where

L+(k) =

∫ 0

−∞
e−ikxΛ

(
− i

∂

∂x

)
[L(x, s)]+− dx, (2.26)

P−(k) =

∫ ∞

0

e−ikxΛ

(
− i

∂

∂x

)
[ψ(x, s)]+− dx. (2.27)

The square brackets notation used in (2.26) and (2.27), and below, denotes the jump
value

[ψ(x, s)]+− = lim
ε→0+

ψ(x, s + ε) − ψ(x, s − ε). (2.28)

The quantities R−(k) and L+(k) depend only on the incident field, and are known,
while F+(k) and P−(k) refer to the normal velocity upstream and the pressure jump
downstream of the scattered field on r = s, and are at this stage unknown.

We define the Wiener–Hopf kernel by

K(k) = Qt (s, k) − Qh(s, k) ≡ K+(k)K−(k). (2.29)

Note that no closed-form expression is available for K(k), since equation (2.7) can
only be solved numerically, although an infinite-product representation is possible
(see Appendix A). The notation used in (2.22)–(2.29) is that subscripts ± denote a
function which is holomorphic (analytic) in the upper half-k-plane (UHP) or lower
half-k-plane (LHP) respectively. Furthermore, in (2.29) we insist that the factors
K±(k) are non-zero and possess algebraic behaviour at infinity in the UHP and
LHP respectively. Full details of the way in which this factorization is completed
are given in Appendix A. Since the frequency is supposed to have a small positive
imaginary part, there is a strip containing the real-k-axis, |Im(k)| < δ say, in which
all quantities are holomorphic, and the UHP/LHP correspond to Im(k) > −δ and
Im(k) < δ respectively.

In the previous subsection we described the spectrum of axial wavenumbers allowed
in a cylindrical duct σ � r � t , and with suitable choice of σ, t these results are now
applied to the regions I, II and III. The incident field will be written as a modal
decomposition, with vector B of given modal amplitudes. So for instance, if we
consider a field incident from region III upstream the incident field is

R =
∑

µ∈S+
a ∪Sc

B3µU
(+)
3µ (r)eiα+

3µx, (2.30)
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where the α+
3µ and U

(+)
3µ (r) are the eigenvalues and corresponding eigenfunctions for

the duct modes in region III. These eigenvalues satisfy K(α+
3µ) = 0, and the + super-

script here means that they are located in the UHP. The sum (2.30) has contributions
to R from, potentially, both the nearly-convected and sonic modes. A suitable
normalization for the mode shapes can be chosen, for instance in our calculations
we choose to normalize to unity the integral of |U (r)|2, but the exact choice of
normalization is unimportant because the whole problem is linear. In the same way,
for incident modes propagating from downstream, the incident field can be written

L =




∑
µ∈S−

a

B1µU
(−)
1µ (r)eiα−

1µx, h < r < s

∑
µ∈S−

a

B2µU
(−)
2µ (r)eiα−

2µx, s < r < 1.
(2.31)

The eigenvalues k = α1µ of region I are poles of Qh(s, k), and the eigenvalues k = α2µ

of region II are poles of Qt (s, k).
We now proceed to derive the Wiener–Hopf equation. After eliminating A(k)

between (2.22) and (2.25) and noting that kc lies in the UHP, we introduce the
quantity

D(α±
3µ) ≡ Λ(α±

3µ)U (±)
3µ

′(s) + 2ΩmU
(±)
3µ (s)/s, (2.32)

and group the functions K, K±, D, and Λ in round brackets with a single argument to
simplify notation (for instance, we write (K−Λ)k for K−(k)Λ(k)). With this convention
the Wiener–Hopf equation becomes

F+(k)K+(k) − R−(k)K+(k) − i
∑

µ∈S+
a ∪Sc

B3µ

k − α+
3µ

(
ΛDK+

Λ2 − 4Ω2

)
α+

3µ

− i
∑
µ∈S−

a

B1µU−
1µ(s)

k − α−
1µ

(
Λ

K−(Λ2 − 4Ω2)

)
α−

1µ

+ i
∑
µ∈S−

a

B2µU−
2µ(s)

k − α−
2µ

(
Λ

K−(Λ2 − 4Ω2)

)
α−

2µ

=
P−(k)

(K−(Λ2 − 4Ω2))k
− L+(k)

(K−(Λ2 − 4Ω2))k
− i

∑
µ∈S+

a ∪Sc

B3µ

k − α+
3µ

(
ΛDK+

Λ2 − 4Ω2

)
α+

3µ

− i
∑
µ∈S−

a

B1µU−
1µ(s)

k − α−
1µ

(
Λ

K−(Λ2 − 4Ω2)

)
α−

1µ

+ i
∑
µ∈S−

a

B2µU−
2µ(s)

k − α−
2µ

(
Λ

K−(Λ2 − 4Ω2)

)
α−

2µ

.

(2.33)

As usual, the two sides of the equation are respectively holomorphic in the UHP
and LHP by construction. We now consider the large-|k| behaviour of (2.33). The
large-|k| behaviour of F+(k) and P−(k) is found by considering the behaviour of the
unsteady field near the leading edge, which has the typical leading-edge behaviour
ψ ∝ ρ1/2 cos(ϕ/2) as ρ → 0. (Here (ρ, ϕ) are plane polar coordinates in the (x, r)-
plane with origin at the splitter leading edge.) From this, it follows that F+(k) and
P−(k) are both O(k−1/2) as k → ∞ in the corresponding half-plane. The quantities
R−(k) and L+(k) can be evaluated immediately using (2.30) and (2.31), and are both
O(k−1) as k → ∞ in the corresponding half-plane. Finally, the behaviour of the split
functions K±(k) is given in Appendix A. Putting all this together, we see that the
function defined throughout � by the respective sides of equation (2.33) is entire and
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is O(1/k) for large |k|, and so is identically zero by Liouville’s Theorem. Hence, we
can determine the previously unknown F+(k) and P−(k), and hence A(k), and we can
invert the Fourier transforms to find the scattered field. The inversion contour lies
along the strip of overlap, and we close the contours in the UHP/LHP to obtain the
scatted field in x > 0, x < 0 respectively.

The inversion integrals can be evaluated by the method of residues in the standard
way, with the additional complication that the non-isolated singularity at k = kc is
encircled when x > 0 and the contour is closed in the UHP. Using the results of the
multiple-scales analysis (§ 2.2 above) the integrand close to k = kc can be inspected,
for instance we find

Qh(r, k) ∼
sin

(
2kcΩ(r − h)

U (k − kc)
+ ψ1

)

2Ω
√

k2
c + m2/s2 sin

(
2kcΩ(s − h)

U (k − kc)
+ ψ2

) as k → kc (2.34)

for certain complicated phases ψ1, ψ2, and the contribution to the integral, if any,
from the neighbourhood of k = kc can be determined. Considering small semi-circular
contours above and below kc it can easily be shown that a non-zero contribution to
the potential from k = kc is only present when r = s in regions I and II. This term is
included in the formulae below for completeness, but recalling from § 2.2 that for this
rigid-body swirling flow any exactly convected mode present in the unsteady potential
has zero unsteady velocity and pressure, it has no physical significance. For more
general flows analogous exactly convected terms would affect the physical variables,
see § 3 for more discussion of the significance of these convected terms in other cases.
We stress that the potential ψ(x, r) is nevertheless continuous in regions I and II and
this is discussed in § 2.4 below, alongside the discussion of the convergence of the
various infinite sums.

In region I, x > 0, h < r < s we find the scattered field

ψ(x, r) = −R +
∑

ν∈S+
a ∪Sc

eiα+
1νxRes(K)|α+

1ν

(
Λ2 − 4Ω2

ΛK+

)
α+

1ν

U
(+)
1ν (r)

U
(+)
1ν (s)

×
∑

µ

{
B1µU

(−)
1µ (s)

(α+
1ν − α−

1µ)

(
Λ

(Λ2 − 4Ω2)K−

)
α−

1µ

−
B2µU

(−)
2µ (s)

(α+
1ν − α−

2µ)

(
Λ

(Λ2 − 4Ω2)K−

)
α−

2µ

+
B3µ

α+
1ν − α+

3µ

(
ΛDK+

Λ2 − 4Ω2

)
α+

3µ

}
+

A(r)eikcx2Ωsm

UK+(kc)
(
m2 + k2

c s
2/m2

) , (2.35)

where Res stands for the residue of a function at a pole in the complex plane and
A(r) = 0 for r �= s, but

A(s) =
∑

µ

{
B1µU

(−)
1µ (s)

(kc − α−
1µ)

(
Λ

(Λ2 − 4Ω2)K−

)
α−

1µ

−
B2µU

(−)
2µ (s)

(kc − α−
2µ)

(
Λ

(Λ2 − 4Ω2)K−

)
α−

2µ

+
B3µ

kc − α+
3µ

(
ΛDK+

Λ2 − 4Ω2

)
α+

3µ

}
. (2.36)
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In Region II, x > 0, s < r < 1 we find

ψ(x, r) = −R +
∑

ν∈S+
a ∪Sc

−eiα+
2νxRes(K)|α+

2ν

(
Λ2 − 4Ω2

ΛK+

)
α+
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U
(+)
2ν (r)

U
(+)
2ν (s)

×
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{
B1µU

(−)
1µ (s)

(α+
2ν − α−

1µ)

(
Λ
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)
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−
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(−)
2µ (s)

(α+
2ν − α−

2µ)

(
Λ

(Λ2 − 4Ω2)K−

)
α−

2µ

+
B3µ

α+
2ν − α+

3µ

(
ΛDK+

Λ2 − 4Ω2

)
α+

3µ

}
+

A(r)eikcx2Ωsm

UK+(kc)
(
m2 + k2

c s
2/m2

) . (2.37)

And in region III, x < 0, h < r < 1 we find

ψ(x, r) = −L +
∑
ν∈S−

a

eiα−
3νxRes

(
1

K

)∣∣∣∣
α−

3ν

(
(Λ2 − 4Ω2)K−
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(−)
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2µ (s)

(α−
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+
B3µ

α−
3ν − α+

3µ

(
ΛDK+

Λ2 − 4Ω2

)
α+

3µ

}
. (2.38)

In these equations the inner sums, over µ, simply cover all the modes present in the
incident field, as defined by (2.30) and (2.31). The scattered field contains components
at all modes present in the relevant part of the spectrum, including all the (cut-on
and cut-off) sonic modes and, in regions I and II, all the nearly-convected modes. The
precise amplitude with which a given incident mode is scattered into a given outgoing
mode displays complicated dependence on all parameters through the various residue
terms and Wiener–Hopf factors, but one broad point can be made. The scattering
of a given mode into modes of a similar wavenumber is enhanced, in preference to
scattering into modes of disparate wavenumber, by the appearance of factors of the
form, for instance (α+

1ν − α−
1µ)−1. Given the relative separation between the families of

sonic and nearly-convected wavenumbers evident in figure 2(a), this effect tends to
enhance the scattering of a mode from a given family into modes within that family
propagating in the same direction (e.g. downstream sonic into downstream sonic).

2.4. Numerical results

We present computations which apply the work of the previous subsection for
illustrative parameter values (see caption of figure 3). In particular, the mean flow has
a significant swirl component, and we take modest frequency and azimuthal order
so that we are not in the high-ω/high-m regime to be considered in § 4. For these
parameter values there are 2, 2 and 4 cut-on sonic modes in regions I, II and III
respectively, and 1, 2 and 2 of them respectively travel downstream. Figure 2 shows
the spectrum in region III. Having obtained the axial wavenumbers we can calculate
the Wiener–Hopf kernel K(k), which is then factorized using the integration formula
(A 1), and hence we can then calculate (2.35)–(2.38). In practice, the infinite tails of
the sums in equations (2.35)–(2.38) must be treated with care. Truncation of the sums
at (suitably) large |k| is permissible because the large-|k| cut-off sonic modes give an
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infinite tail of the form∑
n

n−1/2e−nλx exp

{
in

∫ r

s

√
1 − U 2/c2

0 dr ′
}

(2.39)

for the unsteady pressure in region I (as an example). In (2.39) λ is real and positive
and can be found by evaluating (2.15) with the appropriate limits, (σ, t) = (h, s).
The sum (2.39) is absolutely convergent when x > 0. When x =0 it is conditionally
convergent (see Hardy 1963, Theorem 196), and converges everywhere except at the
leading edge of the splitter plate, (x, r) = (0, s), where the expansion of the unsteady
pressure diverges because of the square-root pressure singularity there. However, more
care is needed for the infinite series of nearly-convected modes near to k = kc. Consider
for instance the field in region I: the asymptotic expressions for the wavenumbers
and mode shapes are already known as k → kc (i.e. as n → ±∞ in (2.11) and (2.13)).
These results can be used to show that, if α is the wavenumber given by (2.11) with
t = s and σ =h, then

Res(K)|α ∼ s − h

U (nπ)2
(
1 + m2/

(
s2k2

c

)) . (2.40)

Further, since K+(k) is by definition holomorphic in the UHP one simply gets
the leading-order behaviour K+(α) ∼ K+(kc) and Λ(α) ∼ 2Ωkc(s − h)/(nπ) as α → kc.
Similar results are available in regions II and III. Hence, the infinite sum of the
contributions from the nearly-convected modes converges (absolutely) like

∑
1/n2 in

the expansion of the pressure. Contributions from the very large-n nearly-convected
modes are therefore seen to be small, and of course the exactly convected (k = kc) terms
in (2.35)–(2.37) do not contribute to the pressure. In the expansion of the unsteady
potential given above the convergence is more delicate however and, considering
region I, for r �= s the nearly convected modes sum like

∑
n−1einπ(r−s)/(s−h), a sum

which is conditionally convergent. When r = s the character of the convergence
changes, and cancellation between modes n and −n occurs to ensure convergence
which is now of the form

∑
n−1 sin(2Ωxkc(s − h)/Unπ). At first sight (2.35), (2.37)

appear discontinuous as r → s± respectively. However, since we can deduce that
the potential is continuous as r → s− in region I (from the continuity in r of the
inversion integral before the contour is deformed near to the singularity at k = kc), we
therefore deduce that the discontinuous exactly convected term in (2.35) cancels the
discontinuity in the delicate nearly-convected infinite sum, and similarly in (2.37) for
r → s+. We stress again that the exactly convected mode in the unsteady potential
has zero unsteady velocity and pressure in this flow, and therefore affects none of the
physical variables.

In what follows, computations have been performed by including in the scattered
field 40 nearly-convected modes on either side of kc, and it has been verified that
the highest of the included nearly-convected modes are well into the asymptotic
regime, with the wavenumbers and residues all agreeing well with the multiple-scales
predictions given in § 2.1. From all this we can therefore conclude that not only is the
scattered field, being made up of an infinite series of contributions, well-defined but
also that the finite truncations we have chosen give an accurate solution.

Figure 3 shows the results for a single incident cut-on sonic mode. In figure 3(a)
the incident mode is from downstream infinity in region I, which could correspond
to noise emanating from an aeroengine core. In this case we see that almost all the
disturbance propagates into region III, and that there is very little scattering back



Acoustic scattering in a duct with mean swirling flow 201

1.0
(a) (b)

0.9

0.8

0.7

0.6

0.5
–1.5 –1.0 –0.5 0

x

r

x
0.5 1.0

1.0

0.9

0.8

0.7

0.6

0.5
–4 –3 –2 –1 0 1 2 3

Figure 3. The amplitude of the total (incident plus scattered) unsteady pressure due to a
single cut-on sonic mode incident from (a) region I, i.e. x > 0, 0.5 < r < 0.7, and (b) region III,
i.e. x < 0. We have inner duct wall h = 0.5 and splitter radius s = 0.7, the axial and swirl mean
flows are given by U = Ω = 0.4, the frequency is ω = 10 and the azimuthal mode number is
m= 3. The darkest colours refer to the highest amplitudes. In (a) the incident mode is the only
upstream-going cut-on mode in region I, while in (b) the incident mode is the more cut-on of
the two downstream-going cut-on modes.

downstream into either regions I or II. In figure 3(b) the incident mode is from
upstream infinity in region III, corresponding to downstream-propagating radiation
generated by the fan, and we see in this case that the scattered field happens to be
stronger in region I than in region II. In figure 3(b) the modulation of the incident
field demonstrates that noise is reflected back upstream into region III. We find in
these calculations that for incident sonic modes the scattered pressure field is strongly
dominated by contributions from the scattered sonic field. However, nearly-convected
disturbances are generated at the leading edge (see that in equations (2.35) and
(2.37) the scattered modes include the nearly-convected spectrum Sc), and make a
significant contribution to the unsteady velocity field. This is in contrast to the case
of irrotational mean flow, in which no vortical disturbance is generated at the leading
edge and the scattered field is purely irrotational.

If the incident mode is one of the nearly-convected type from upstream (i.e. from
region III) we find that both acoustic and nearly-convected scattered modes can
contribute to the pressure. For example, we take the incident mode to be the n= 15
nearly-convected mode (for which k =21.53, compared to kc = 22), quite far down
the tail so that the nearby nearly-convected modes are densely clustered. With this
choice we would expect that there are likely to be nearly-convected modes of very
similar wavenumber excited in regions I and II, and in fact we do see a noticeable
contribution to the downstream scattered pressure from the nearly-convected modes
in this case. Figure 4(a) shows the total unsteady pressure at x = ±0 as a function
of r: the agreement of the two provides a check on the correctness of the truncation
of the infinite sums and the numerical routines used. The continuity of the pressure
across x = 0 in this, and all the other cases we have computed, is very good except in
the immediate vicinity of the pressure singularity, where of course the infinite sums
converge more and more slowly. The close proximity of this singularity is indicated by
the larger values taken by the unsteady pressure at x =0+ close to the splitter radius
r = 0.7. Figure 4(b) shows the unsteady pressure further downstream, at x =0.5. We
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Figure 4. The total unsteady pressure due to a single nearly-convected mode (n= 15) incident
from region III, against r . In (a) the + and � symbols refer to the pressure at x = −0 (just
upstream of the leading edge) and at x = +0 (just downstream of the leading edge) respectively.
In (b) x = 0.5, the + symbols are the total unsteady pressure and the � symbols represent that
component of the total unsteady pressure associated with the scattered sonic modes.

see that the unsteady pressure due to the acoustic modes accounts for most of the
total unsteady pressure here, but that the nearly-convected modes are contributing
noticeably to the total (typically by of the order of 10 % in r � 0.7, but rising to as
much as 50 % of the total for r � 0.7).

The contributions from the nearly-convected modes to the scattered pressure which
are noticeable in figure 4(b) contrast sharply with the behaviour in the absence of
mean vorticity, and also (as we shall see in § 4) with the behaviour in the high-
frequency regime with swirl. If the mean flow is irrotational all the unsteady pressure
comes from the acoustic modes, because the vorticity modes carry no pressure at all,
while for rotational flow and with ω, m large most of the pressure comes from the
acoustic modes. Even in the present O(1) frequency regime, however, if the incident
mode is very close to pure convection, i.e. in (2.11) |n| � 1, then almost all of the
scattered pressure comes from the sonic modes. nearly-convected modes close to
the incident wavenumber will still be excited, but now these are also close to pure
convection and so carry little pressure. Consider the incident nearly-convected mode
with index nµ in region III (with |nµ| � 1), for which it follows from (2.35) and (2.11)
that the pressure amplitude of the scattered nearly-convected mode with index nν � 1
in region I, say, is proportional to

1

nν[(s − h)nµ − (1 − h)nν]
. (2.41)

Quantity (2.41) is typically small for large nµ,ν , confirming that little pressure will
be carried by modes very close to pure convection, but takes its largest value
when nν ≈ (s − h)nµ/(1 − h), corresponding to the scattered mode in region I whose
wavelength most closely matches that of the incident mode in region III.

3. The trailing-edge problem in rigid-body swirl
We now consider the scattering problem for disturbances interacting with the

trailing edge of a splitter plate. For definiteness the geometry we consider is exactly
that of figure 1, but now reflected in x = 0, and with the axial mean flow still from
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left to right. The boundary conditions are still zero radial velocity on the splitter
plane, which has now become x < 0, r = s. However, now we must also impose the
trailing-edge unsteady Kutta condition (Crighton 1985)

lim
x→0−

[p′(x, r)]r=s+
r=s− = 0. (3.1)

Within the fluid the pressure is again continuous everywhere, as is the radial velocity,
but we allow, as is usual when applying the Kutta condition, for the possibility of a
wake sheet to be shed from the trailing edge across which the axial and/or azimuthal
velocity may be discontinuous.

The algebraic manipulations of the Wiener–Hopf calculation are similar to those
for the leading-edge problem in § 2, and are not included in full here. Instead, we
highlight briefly the principal differences between the analyses and present the final
results.

With the altered geometry described above, the ± superscripts must be interchanged
between (2.30) and (2.31) in order to correctly describe a general incident field. The
details of the Wiener–Hopf procedure differ a little, because the half-range transform
of the pressure jump on the splitter (denoted P−(k) in § 2) is now a plus-function,
and since the zero kc of Λ(k) is in the UHP we cannot divide through by Λ(k) to
find the Wiener–Hopf equation. Also, the singularity at the trailing edge is weaker
than at the leading edge, now of the form ψtot ∼ ρ3/2 sin(3ϕ/2) as ρ → 0. However,
once these points have been noted the analysis can proceed as in § 2. Inverting the
resulting Fourier transform, we obtain in region I, x < 0, h < r < s,

ψ(x, r) = −L +
∑
ν∈S−
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eiα−
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3µ

}
; (3.2)

in region II, x < 0, s < r < 1,

ψ(x, r) = −L +
∑
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2νxRes(K)|α−
2ν

(K−Λ)α−
2ν

U
(−)
2ν (r)

U
(−)
2ν (s)

∑
µ

{
B1µU

(+)
1µ (s)

α−
2ν − α+

1µ

(
Λ

K+

)
α+

1µ

−
B2µU

(+)
2µ (s)

α−
2ν − α+

2µ

(
Λ

K+

)
α+

2µ

+
B3µ

α−
2ν − α−

3µ

(DΛK−)α−
3µ

}
; (3.3)

and in region III, x > 0, h < r < 1,

ψ(x, r) = −R +
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. (3.4)



204 C. J. Heaton and N. Peake

The final term in (3.4) corresponds to a contribution to the unsteady potential from
the non-isolated singularity at k = kc, with B(r) = 0 for r �= s but

B(s±) = ±
∑

µ

{
B1µU

(+)
1µ (s)

kc − α+
1µ

(
Λ

K+

)
α+
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−
B2µU

(+)
2µ (s)

kc − α+
2µ

(
Λ
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)
α+
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+
B3µ(DΛK−)α−

3µ

kc − α−
3µ

}
.

(3.5)

Exactly as in the leading edge case in § 2.3, the exactly convected term in (3.4) ensures
that the potential ψ(x, r) is continuous as r → s− from below, and as r → s+ from
above, and arises because of the delicate conditional convergence of the infinite
sum of contributions of nearly-convected modes. We see that the potential, although
continuous as r approaches s from above or below, is discontinuous across r = s, the
discontinuity being given by twice the exactly convected term in (3.4). However, the un-
steady pressure and the total unsteady velocity are continuous across r = s. The fact
that the unsteady pressure is continuous follows simply from the fact that the k = kc

mode has zero associated pressure. The continuity of all three components of unsteady
velocity depends on the fact that we are here considering rigid-body swirl with uniform
axial mean flow, and as argued in § 2.2 the total unsteady velocity associated with the
k = kc mode is zero. This behaviour is in contrast to the case of general swirl and axial
mean flow distributions, for which a wake sheet would generally be present on r = s,
across which the axial and azimuthal components of the total velocity would jump as
a result of a discontinuous potential. In § 4.4, where we consider more general mean
flows, such a wake sheet is indeed present.

It is interesting to note that for uniform axial mean flow, although a wake sheet
is absent for any Ω �=0 (as argued in the previous paragraph), one is present when
Ω = 0. In fact, the calculation in § 2.2 that the k = kc mode has zero total velocity fails
when Ω =0, and ultimately the difference in behaviour between the Ω = 0 and Ω �= 0
cases can be tracked down to the presence of the factor

Λ2

Λ2 − 4Ω2
(3.6)

multiplying the highest derivative in (2.7) (as well as appearing in relations such as
(2.10)). The factor (3.6) reduces to zero as k = kc is approached (recall from (2.9) that
Λ ∝ k − kc) for any Ω �= 0, but when Ω = 0 the factor (3.6) is unity. This is the reason
why the wake sheet, having been absent in the calculation of the present section with
Ω �= 0, then appears when Ω = 0, as described by Rienstra (1984) and Howe (1986)
who both studied problems in uniform mean flow with no swirl.

A further note to make about the results presented for this scattering problem
is that the results of Rienstra (1984) for a similar problem in uniform mean flow
can be recovered in the limit Ω → 0, and we shall outline the correspondence here.
Letting Ω → 0 the mode-shape equation (2.7) becomes Bessel’s equation and the
quantities Qt (r, k), Qh(r, k) and K(k) defined above can be written explicitly in terms
of Bessel and Hankel functions. Setting the outer radius of the duct to infinity recovers
Rienstra’s geometry. After a little manipulation the kernel K(k) can be expressed in
terms of the kernel defined in Rienstra (1984), which we denote by KR , and (noting
the different Fourier transform convention used) we can therefore identify

1

ΛK−
≡ w2

+kKR
+√

2
,

1

K+

≡ w2
−kKR

−√
2

, (3.7)
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Figure 5. (a) The total unsteady pressure, for a single nearly-convected mode incident on the
trailing edge from region I, other conditions as in figure 3. In (b) the total unsteady pressure at
x = ±0 is denoted with + and � symbols respectively, while the unsteady pressure at x = +0
associated purely with the scattered sonic modes is denoted with � symbols.

where the w± are defined in Rienstra (1984). It is then straightforward to verify that
the inversion integral in Rienstra (1984), for which the full Kutta condition is enforced
(γ = 1 in the notation of that paper), is recovered by the Ω = 0 case of our solution
to the present problem. Indeed, one can verify by inspection of the inversion integral
before it is evaluated by the method of residues that the pressure jump across r = s is
zero for x > 0 and behaves like A|x|1/2 as x → 0−, and that the full Kutta condition
(3.1) is satisfied by (3.2)–(3.4) when Ω �= 0 as well, as required.

We now present results for the same parameter values as in the leading-edge case.
For the trailing edge, sonic modes again predominantly scatter into sonic modes.
The mechanism for noise generation at the trailing edge is provided by the fact that
the wake cannot support a pressure jump, so that a scattered field is produced to
cancel the pressure jump present in the incident field. The Kutta condition (3.1) then
implies that the scattered pressure will be of the same order of magnitude as the
pressure associated with the incident mode. For an incident mode of the nearly-
convected type, this heuristic argument suggests that the pressure in the scattered
acoustic field will never dominate over the pressure fields associated with the incident
and scattered nearly-convected contributions. We find in our computations that the
nearly-convected modes always contribute significantly to the scattered pressure (this
is also seen at high frequency in § 4), and that the picture is qualitatively the same
for all nearly-convected modes. Figure 5(a) shows the unsteady pressure field for
a nearly-convected mode incident from region I, while figure 5(b) shows the total
unsteady pressure distribution across the duct just upstream and just downstream
of the trailing edge. Note that the agreement between + and � symbols confirms
the continuity of our solutions (3.2)–(3.4), and that there is no pressure singularity
at the trailing edge (as stipulated in equation (3.1)). Significantly, the contribution
to the total scattered pressure from the scattered sonic disturbances is quite a small
fraction of the total pressure inboard of the line of the splitter, where the incident
and scattered nearly-convected disturbances dominate (recall that the incident nearly-
convected disturbance originates in r � 0.7). As one would expect, only a very small
nearly-convected field is induced in x > 0 outboard of the splitter, where the scattered
sonic field is consequently dominant. This is all in contrast to what would happen in
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the absence of mean vorticity, in which case the convected disturbance would convect
past the trailing edge with zero pressure, and no scattered pressure field would be
produced.

4. Scattering in the limit of large azimuthal order
In this section we will suppose that the azimuthal order, m, is large. This follows the

asymptotic approach used in Cooper & Peake (2005), who studied the propagation
of nearly-convected and sonic disturbances along an infinite duct in swirling flow. In
the aeroengine context, unsteady flow generated by the rotor has tonal components
with frequencies which are integer multiples of BΩF , where B is the number of fan
blades and ΩF is the fan rotation rate, and azimuthal orders, m, which are integer
multiples of B . The blade number is often large (between 20 and 30), so that the limit
m � 1 with ω = O(m) is a practically relevant limit. The great advantage of making
the large-m approximation is that the resulting simplification will allow us to study
a much wider class of mean flows than the rigid-body swirl case of the previous two
sections.

4.1. The infinite duct

In this subsection we present results from Cooper & Peake (2005) for an infinite duct,
which will be required in our scattering problem. The governing equations are (2.4)
and (2.5) as before, but the mean flow now takes the more general form

U0(r) = Ux(r)ex + Uθ (r)eθ . (4.1)

It turns out that the sonic and nearly-convected parts of the spectrum are described
by different scalings with m. For the sonic part of the spectrum, we write the unsteady
velocity and potential as

u = A(r)eikx+imθ−iωt , φ = Φ(r)eikx+imθ−iωt . (4.2)

The axial wavenumber is supposed large, with the preferred scaling k = O(m), and
since these modes are pressure-dominated with most of their velocity coming from
the irrotational part of the unsteady velocity we choose |u| =O(φ). This scaling leads
to an entirely consistent expansion in powers if 1/m (or 1/B), see Cooper & Peake
(2005). To leading order in m, equation (2.5) then reduces to the second-order ODE

d2Φ

dr2
= −m2f Φ where f (r) ≡ (Uθ/r − ω/m + Uxk/m)2

c2
0

− 1

r2
− k2

m2
, (4.3)

with boundary condition dΦ/dr =0 at the outer and inner duct radii. This yields an
eigenvalue problem for k, which is solved using the WKB method as described in
§ 5.1 of Cooper & Peake (2005). In fact, when k is real (4.3) can have one or more
turning points, where f (r) = 0. A turning point corresponds physically to a caustic
cylinder, as described by Chapman (1994). A uniformly-valid composite expression
for the eigenfunctions is not given in Cooper & Peake (2005), but will be required for
our subsequent analysis (Cooper & Peake 2005 simply present the inner Airy function
and outer (singular) WKB solutions.) We therefore employ Langer’s solution (details
in Bender & Orszag 1978) to (4.3), which gives an approximation which is uniformly
valid in r as m → ∞. If r = c is the turning point, then the Langer solution is of the
form

Φ = S
1/6
0 (r)(f (r))−1/4

[
αAi

(
(3|m|S0(r)/2)2/3

)
+ βBi

(
(3|m|S0(r)/2)2/3

)]
,

S0(r) ≡
∫ r

c

√
−f (r ′) dr ′.

}
(4.4)



Acoustic scattering in a duct with mean swirling flow 207

A ratio between the arbitrary constants α, β follows from one boundary condition,
and an implicit equation to be solved for the eigenvalue k follows from the second
boundary condition (note that c depends on k). Langer’s solution (4.4) reduces to the
Airy/WKB solutions given in Cooper & Peake (2005) very close to/far from r = c, and
is found to give better agreement with direct numerical integration. Multiple turning
points can also be treated by defining several Langer-type solutions, one for each
turning point. These expressions are then ‘stitched’ together by enforcing continuity
of Φ and dΦ/dr , for example midway between consecutive turning points, to give a
uniformly valid approximation over the whole interval. (See Bender & Orszag 1978,
§ 10.5.)

Turning now to the nearly-convected part of the spectrum and again closely
following Cooper & Peake (2005), we consider the equations governing a high-
frequency nearly-convected disturbance. In the large-m limit the entire nearly-
convected family of eigenvalues have the same locally convected wavenumber, i.e.
k = k∗(r) = O(m) with ω − mUθ (r)/r − k∗(r)Ux(r) = 0, but with amplitude depending
on position. This leads to

u = A(x, r)eik∗(r)x+imθ−iωt , φ = Φ(x, r)eik∗(r)x+imθ−iωt . (4.5)

Here we expect the rotational and irrotational parts to contribute equally to the
velocity, and therefore take the scaling |A| = O(mΦ). The downstream evolution of
A(x, r) is then described by a set of three first-order ODEs of the form

∂ A
∂x

= M(x, r)A, (4.6)

given in equations (16)–(18) of Cooper & Peake (2005), while the potential Φ is slaved
to A(x, r) and is given by equation (19) of Cooper & Peake (2005). Downstream of
some prescribed initial condition (4.6) can be solved analytically, details are given
in Appendix B, but it turns out that the boundary conditions at the walls cannot
in general be satisfied. In Cooper & Peake (2005) hydrodynamic boundary layers of
thickness O(1/m) are introduced at each wall, which define correction terms to ensure
that the boundary conditions are satisfied – this is described in § 2.2 of Cooper &
Peake (2005).

In summary, we have presented the large-m description of unsteady flow in an
infinite duct. The total unsteady field is made up of three components: the sonic
field given by (4.4); the nearly-convected field in the body of the fluid, given as
the solution of (4.6); and the boundary-layer correction localized on the walls to
satisfy the boundary conditions. We will now use this description to study scattering
problems in the large-m regime.

4.2. Scattering of sonic modes at the leading edge

Here we attempt the large-m solution of the scattering of incident sonic modes by
the leading edge. The solution proceeds almost as in the exact case of § 2.3, but with
certain key differences which we will mention here. We denote the solution of the
WKB equation (4.3) with ∂Φ/∂r = 0, 1 at r = h, s respectively as Qh(r, k), and the
solution with ∂Φ/∂r = 0, 1 at r = 1, s is denoted Qt (r, k). Note that these Qt,h are
slightly different from those in § 2.3. Then using the fact that ∂φ/∂r is continuous
everywhere, we write for the full-range Fourier transform of the unsteady velocity
potential

ψ̂(r, k) =

{
A(k)Qh(r, k), h < r < s

A(k)Qt (r, k), s < r < 1,
(4.7)
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with A(k) at this stage unknown. A Wiener–Hopf analysis proceeds as before with
kernel, denoted Kh(k), given by (2.29) (but with Qh,t as given in this subsection). The
asymptotic behaviour of Kh(k) for k → ∞ is different to what is given in Appendix A

for K(k). Now we have Kh(k) ∼ 1/(C|k|) as k → ∞ with C = −1
2

√
1 − U 2

x (s)/c2
0(s), and

Kh
±(k) = O(k−1/2) as k → ∞ in the appropriate half-plane. Otherwise, the procedure in

Appendix A for decomposing K(k) can be applied to Kh(k) as well. In particular
Kh(k) is also meromorphic, as the continuous spectrum present for a general mean
flow has been decoupled from the sonic spectrum by the asymptotic scaling in § 4.1,
and is again absent from the Wiener–Hopf kernel.

After some straightforward manipulations, we present the final results for the
scattered field as follows. In region I, x > 0, h < r < s we have for the unsteady
potential

ψ(x, r) = −R +

∞∑
ν=1

eiα+
1νxRes(Kh)|α+

1ν

Kh
+(α+

1ν)

U
(+)
1ν (r)

U
(+)
1ν (s)

×
∞∑

µ=1

{
B3µKh

+(α+
3µ)U (+)

3µ
′(s)

α+
1ν − α+

3µ

+
B1µU

(−)
1µ (s)

(α+
1ν − α−

1µ)Kh
−(α−

1µ)
−

B2µU
(−)
2µ (s)

(α+
1ν − α−

2µ)Kh
−(α−

2µ)

}
. (4.8)

In Region II, x > 0, s < r < 1, we have

ψ(x, r) = −R +

∞∑
ν=1

−
eiα+

2νxRes(Kh)|α+
2ν

Kh
+(α+

2ν)

U
(+)
2ν (r)

U
(+)
2ν (s)

×
∞∑

µ=1

{
B3µKh

+(α+
3µ)U (+)

3µ
′(s)

α+
2ν − α+

3µ

+
B1µU

(−)
1µ (s)

(α+
2ν − α−

1µ)Kh
−(α−

1µ)
−

B2µU
(−)
2µ (s)

(α+
2ν − α−

2µ)Kh
−(α−

2µ)

}
. (4.9)

And in region III, x < 0, h < r < 1,

ψ(x, r) = −L +

∞∑
ν=1

eiα−
3νxKh

−(α−
3ν)Res

(
1

Kh

)∣∣∣∣
α−

3ν

U
(−)
3ν (r)

U
(−)
3ν

′(s)

×
∞∑

µ=1

{
B3µKh

+(α+
3µ)U (+)

3µ
′(s)

α−
3ν − α+

3µ

+
B1µU

(−)
1µ (s)

(α−
3ν − α−

1µ)Kh
−(α−

1µ)
−

B2µU
(−)
2µ (s)

(α−
3ν − α−

2µ)Kh
−(α−

2µ)

}
. (4.10)

Here 1 � ν, µ < ∞ label the sonic modes, with ν, µ =1 being the most cut-on mode
in the corresponding half-plane. Note that equations (4.8)–(4.10) are similar to the
m =O(1) analogues (2.35)–(2.38), but there are important differences. In particular,
as already noted, the Wiener–Hopf kernel has different behaviour for large |k|.
Importantly, the formulae of § 2.3 include the nearly-convected spectrum for that
problem exactly, while here the effect of the nearly-convected spectrum appears at a
higher order in 1/m and is therefore absent. Recall that (2.35)–(2.38) are restricted to
a particular (rigid-body) mean flow, whereas these asymptotic results hold for sonic
scattering in a general mean flow. Nevertheless, a large-m limit, with ω, k = O(m),
of equations (2.35)–(2.38) can be taken. First, note that |Λ| → ∞ as |k| → ∞, so that
only the high-frequency sonic modes are obtained. Further, if we restrict attention in
the large-m limit to rigid-body swirl, then it is easy to show that Λ(k)K−(k) ∼ Kh

−(k)
and K+(k) ∼ Kh

+(k) as m → ∞, while |2Ω/Λ(k)| � 1. In this way, equations (4.8)–(4.10)
are recovered exactly from the exact equations (2.35)–(2.38). However, we emphasize
again that the results presented in this subsection are applicable to much more general
mean flows than the rigid-body-swirl results of § 2.3, albeit only at large m.
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Figure 6. Unsteady pressure in the duct for (a) the first (µ = 1) and (b) the eighth (µ= 8)
cut-on sonic modes, incident from downstream in region II. Here we take the radii of the
hub and splitter as h =0.391 and s = 0.569, the azimuthal order is m= −48, the frequency is
ω = 46.8, the mean axial flow is Ux(r) = 1/2 and the mean swirl is Uθ = 0.1r + 0.25/r .

We now present computations using parameter values (see figure 6) mostly origi-
nating from Nijboer & Sijtsma (1998) and Cooper & Peake (2005). Note that the
general mean flows treated in this section can now include unstable flows, however
results are only presented for flows which were found to be stable. For the chosen
parameter values there are 9, 16 and 23 cut-on sonic modes in regions I, II and III
respectively, of which 4, 8 and 11 are upstream-propagating. Figure 6 shows plots
of the pressure for two different incident cut-on sonic modes propagating upstream
from region II (in practical terms representing noise from the downstream stator). In
figure 6(a) the incident wave mode has a caustic cylinder just outboard of the splitter
radius, and is exponentially small outside this caustic cylinder. There is no sufficiently
similar mode available in region III for this incident mode to be predominantly
scattered into, and instead we see a complete redistribution of energy over several
radial modes in region III. The picture is reminiscent of a ring source located at
the tip of the splitter, indicating the predominance of the field diffracted from the
leading edge. In figure 6(b) the incident wave is of higher radial order, and the
caustic has now disappeared from the duct so that the incident mode has significant
amplitude over all of region II. We now see noise scattered into all three regions,
including back downstream into region I. It is important to note that the presence
of the leading edge can have a significant effect on the sonic mode propagating
upstream. The incident mode does not simply propagate straight past the edge;
diffraction leads to a complicated near field, while in the far field, say x < −0.3
in figure 6(b), the field in region III is typically dominated by a disturbance of
roughly the same axial wavelength and mode shape (in r � s at least) as the incoming
disturbance.

The large-m limit of the problem described in § 3 of the scattering of sonic modes
at a splitter trailing edge has also been completed, and the qualitative conclusions are
very similar to the leading-edge results above (however note that, having abandoned
the specialized mean flow of § 3, the usual wake sheet is present downstream of the
trailing edge, as expected, just as it is present in § 4.4 below). In the next subsection we
will therefore consider instead the large-m scattering of nearly-convected disturbances,
and here the effects of the mean-flow vorticity will be crucial.
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4.3. Scattering of a nearly-convected mode at a leading edge

We now consider the scattering of an incident nearly-convected disturbance by the
leading-edge geometry of figure 1. Recall from § 4.1 that in the large-m limit the
nearly-convected disturbance has the form away from the walls of a profile which
marches downstream according to an equation of the form (4.6), plus a boundary-
layer correction in layers of width O(1/m) near the walls to ensure zero normal
velocity on the walls.

For the leading-edge scattering problem we define an inner region around the
leading edge of axial and radial extent O(1/m), with inner coordinates R = |m|(r − s),
X = |m|x. Applying this inner scaling to equation (2.4) and using the decomposition
(4.5), we find to leading order

∂ A
∂X

= 0. (4.11)

Furthermore, the rescaled equation for the potential has a left-hand side which is
simply the rescaled wave operator (i.e. the operator on the left of (2.5) with x and
r replaced by X and R), while the source term present on the right-hand side of
(2.5) turns out to be at a smaller order in m than the left-hand side, and is therefore
neglected.

Now we describe the various terms present in the solution of this scattering problem,
as follows:

(a) Away from the splitter the nearly-convected disturbance, and the boundary-
layer corrections on the inner and outer duct walls, are simply marched downstream
and are unaffected by the presence of the splitter. They will be augmented by
additional terms generated at the splitter leading edge.

(b) To satisfy the condition of zero radial velocity on the splitter, a correction
must be generated to cancel the upwash on the splitter from the nearly-convected
disturbance. This upwash is of the form v(x)eik∗(s)x , where we recall that k∗(r) = O(m)
is the convected axial wavenumber at radius r and v(x) is known. To do this we
solve a scattering problem in the inner region, leading to a correction term which has
upwash −v(0)eik∗(s)X/|m| on R = 0, X > 0. This correction term must be purely sonic,
because from (4.11) the nearly-convected flow does not evolve in the inner region, so
that throughout the inner region A is constant and given by the upstream inner limit
of the incident disturbance.

(c) A further correction must be introduced to cancel the remaining upwash on
r = s±, x > O(1/m) in the outer region, i.e. this correction must have upwash

−[v(x) − v(0)] eik∗(s)x, r = s±, x > 0. (4.12)

Note how term (c) arises from the way in which the sonic field generated at the
leading edge, point (b) above, only cancels the incident upwash exactly in the inner
region. Correction term (c) is a hydrodynamic disturbance which decays exponentially
away from the boundary layers on either side of the splitter plate, and therefore does
not contribute significantly to the sound in the duct. Putting all this information
together, the problem for determining the sound in the duct has reduced to that of
finding the scattered sonic potential in point (b) above, and this is done using exactly
the solution method in the previous subsection, but now with the boundary condition
∂φ/∂r = −v(0)e(ik∗(s)x) on r = s±, x > 0. Note that the scattered field will simply be
proportional to the incident upwash at the leading edge. Also, the pressure of the
scattered sonic field dominates the pressure field of the incident nearly-convected
disturbance and of the boundary-layer corrections, both of which possess a convected
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Figure 7. The unsteady pressure of the scattered sonic field, with the nearly-convected
disturbance incident from upstream infinity. Other conditions as in figure 6.

phase. Having reduced the problem to another Wiener–Hopf problem for the scattered
field, we simply state the result for the scattered potential: in region I, x > 0, h < r < s

ψ = −v(0)eik∗(s)xQh(r, k
∗(s))−v(0)Kh

+(k∗(s))

∞∑
µ=1

eiα+
1µxRes(Kh)|α+

1µ

Kh
+(α+

1µ)(k∗(s) − α+
1µ)

U
(+)
1µ (r)

U
(+)
1µ (s)

; (4.13)

in region II, x > 0, s < r < 1

ψ = −v(0)eik∗(s)xQt (r, k
∗(s))+v(0)Kh

+(k∗(s))

∞∑
µ=1

eiα+
2µxRes(Kh)|α+

2µ

Kh
+(α+

2µ)(k∗(s) − α+
2µ)

U
(+)
2µ (r)

U
(+)
2µ (s)

; (4.14)

and in region III, x < 0, h < r < 1

ψ = −v(0)Kh
+(k∗(s))

∞∑
µ=1

eiα−
3µxKh

−(α−
3µ)Res(1/Kh)|α−

3µ

(k∗(s) − α−
3µ)

U
(−)
3µ (r)

U
(−)
3µ

′(s)
. (4.15)

The first terms in (4.13) and (4.14) provide the upwash to satisfy the splitter boundary
condition. They are convected and pressure-less when r = s, and are localized near
r = s. This latter point follows because the wavenumber k = k∗(s) lies well away from
the sonic wavenumbers in the axial eigenvalue plane, and a standard WKB analysis
can be used to show that Qh,t (r, k

∗(s)) decay exponentially away from r = s. The
remaining terms in (4.13)–(4.14) and all the terms in (4.15) are the scattered acoustic
field.

The pressure of the scattered acoustic field is plotted in figure 7. The only in-
formation from the incident disturbance that is needed to find the scattered field is
v(0), the upwash at the splitter leading edge, and since this only acts as a multiplicative
constant on the whole field it is set to be unity, so that without any detailed knowledge
of a particular incident nearly-convected disturbance we see the generic response.
Figure 7 shows that the scattering at the leading edge produces significant noise in all
three regions – so that in the aeroengine application noise is propagating downstream
toward the engine and into the bypass as well as back upstream toward the fan.
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4.4. Scattering of a nearly-convected mode at a trailing edge

The final problem to be considered is that of an incident nearly-convected disturbance
impinging on a splitter-plate trailing-edge geometry. In contrast to the leading–edge
problem in the previous subsection, where the incident gust had a non-zero upwash
on the splitter which had to be cancelled by the introduction of a scattered sonic field,
in the trailing-edge problem the downstream continuation of the incident disturbance
(including the associated wall boundary layer) does not violate the condition of
continuous normal velocity across the wake. Instead, we must impose continuity
of disturbance pressure in the fluid downstream, together with the unsteady Kutta
condition at the trailing edge. Specifically, if we suppose that the incident disturbance
is simply marched downstream, with the (incorrect) rigid-wall boundary condition in
x > 0, then this incident disturbance will posses a pressure jump

[p′
inc]

s+
s− = �p(x)eik∗(s)x (4.16)

across r = s for all x. The scattered field from the trailing edge is then introduced to
cancel this pressure jump, i.e. the scattered field has a pressure jump

[p′
scat]

s+
s− = −�p(x)eik∗(s)x in x > 0, (4.17)

and such that

lim
x→0−

[p′
scat]

s+
s− = −�p(0)eik∗(s)x, (4.18)

so that the Kutta condition of zero pressure jump at the trailing edge is satisfied.
Just as was done at the leading edge, we consider an inner region of radial

and axial extent O(1/|m|) around the trailing edge. Again, because the nearly con-
vected quantities necessarily propagate downstream, and only a sonic correction can
propagate upstream from the trailing edge, our scattered field must have A = 0 in
the inner region. So in the same vein as before, the inner problem is a Wiener–Hopf
problem for a scattered sonic disturbance, and we find this field by considering the
two-part boundary-value problem in the inner region in which the sonic scattered
waves have zero radial velocity on the splitter R =0, X < 0, with continuous normal
(radial) velocity across the wake sheet R = 0, X > 0, with an imposed pressure jump
across R = 0 of

−�p(0)eik∗(s)x in X > 0, (4.19)

and such that the scattered pressure jump satisfies the Kutta condition (4.18). Further
downstream, away from the inner region, another correction term must be found to
cancel the remaining pressure jump of [�p(x) − �p(0)] eik∗(s)x across the wake sheet.

At this point a significant difference from the leading-edge problem becomes
apparent, because the nature of the boundary conditions means that the new cor-
rection terms have pressures which are at most of the same order of magnitude as the
incident pressure jump across the splitter. This means that the scattered sonic field
no longer dominates the total unsteady pressure, which must now be calculated by
including contributions from the incident disturbance and the wake sheet, along with
the scattered sonic field.

The input to our calculation is provided by considering a nearly-convected
disturbance propagating along the duct upstream, exactly as calculated in Cooper &
Peake (2005). Figure 8 shows the pressure of the incident disturbance; the boundary-
layer structure, in which the largest unsteady pressures are concentrated near the
walls, is clearly visible.
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Figure 8. The unsteady pressure of an incident disturbance propagating downstream in the
duct 0.7 � r � 1, with azimuthal order m= 52, frequency ω = 78, mean axial flow Ux(r) = 0.7
and mean swirl Uθ =0.2r + 0.1/r .

The first step in our scattering calculation is the sonic problem for the scattered
unsteady potential from the inner region at the trailing edge. This Wiener–Hopf
problem is again similar to those solved previously, and we find that: in region I,
x < 0, h < r < s,

ψ(x, r) =
−i�p(0)

ρ0(s)Ux(s)K
h
+(k∗(s))

∞∑
ν=1

eiα−
1νxRes(Kh)|α−

1ν

Kh
−(α−

1ν)(α
−
1ν − k∗(s))2

U
(−)
1ν (r)

U
(−)
1ν (s)

; (4.20)

in region II, x < 0, s < r < 1,

ψ(x, r) =
i�p(0)

ρ0(s)Ux(s)K
h
+(k∗(s))

∞∑
ν=1

eiα−
2νxRes(Kh)|α−

2ν

Kh
−(α−

2ν)(α
−
2ν − k∗(s))2

U
(−)
2ν (r)

U
(−)
2ν (s)

; (4.21)

and in region III, x > 0, h < r < 1,

ψ(x, r) =
−i�p(0)

ρ0(s)Ux(s)K
h
+(k∗(s))

∞∑
ν=1

eiα+
3νxKh

+(α+
3ν)Res(1/Kh)|α+

3ν

(α+
3ν − k∗(s))2

U
(+)
3ν (r)

U
(+)
3ν

′(s)

+
−i�p(0)

ρ0(s)Ux(s)K
h
+(k∗(s))

Res

(
eikxQt,h(r, k)

(k − k∗(s))2Kh
−(k)

)∣∣∣∣
k=k∗(s)

. (4.22)

The residue in the final term of (4.22) simplifies to

eik∗(s)x

(
iQt,h(r, k

∗(s))x

Kh
−(k∗(s))

+ F (r, k∗(s))

)
, (4.23)

where F (r, k∗(s)) is a complicated function which is independent of x. Equation (4.23)
corresponds to a contribution with phase speed equal to the convected phase speed
at r = s, and which is localized close to r = s (as discussed following equation (4.15)).
However, the linear x dependence of the amplitude of the first term in (4.23) means
that this term contributes to the pressure field on r = s, despite having a convected
phase there. In fact, its pressure is

−�p(0)Qt,h(r, k
∗(s))eik∗(s)x

Kh(k∗(s))
(4.24)

for r > s and r < s respectively. This term evidently provides the appropriate pressure
jump across r = s to satisfy the Kutta condition at x = 0. Equation (3.4) is the m = O(1)
equivalent of (4.22) – note that the contributions from the nearly-convected spectrum
Sc in (3.4) have combined to form the first term in the wake contribution (4.23) as
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m → ∞. Note also that equations (4.20)–(4.22) give the amplitudes of the scattered
acoustic modes, and these amplitudes are all proportional to �p(0), the incident
pressure jump at the trailing edge.

The second step in our scattering calculation is that we now find a correction to
cancel the pressure jump [�p(x) − �p(0)] eik∗(s)x across r = s in x > 0. In order to do
this we need a thin wake region, of width O(1/|m|) around r = s, but of O(1) extent in
the axial direction. Using the inner radial coordinate R = |m|(r − s), the leading-order
momentum equations from (2.4) are

Ux

∂Ax

∂x
+ U ′

xAr = −U ′
x

{
xk∗

r iφ + |m| ∂φ

∂R

}
, (4.25)

Ux

∂Ar

∂x
− 2

Uθ

s
Aθ =

{
m

(rUθ )
′

s2
+ k∗U ′

x

}
iφ, (4.26)

Ux

∂Aθ

∂x
+

(rUθ )
′

s
Ar = − (rUθ )

′

s

{
xk∗

r iφ + |m| ∂φ

∂R

}
, (4.27)

in which k∗ and all mean flow quantities are evaluated at r = s, and k∗
r is the

r-derivative of k∗(r), also evaluated at r = s. Equations (4.25)–(4.27) are equivalent
to equations (26)–(28) in Cooper & Peake (2005). The leading-order continuity
equation, (2.5), becomes

m2

[
∂2φ̃

∂R2
−

((
k∗

m

)2

+
1

s2

)
φ̃

]
e−iRxk∗

r /|m| = −|m|∂Ar

∂R
− ixk∗

r Ar − im

s
Aθ − ik∗Ax, (4.28)

where φ̃ ≡ φeiRk∗
r (s)x/|m| and k∗, k∗

r and all mean flow quantities are again evaluated at
r = s. Equation (4.28) is the equivalent of equation (29) in Cooper & Peake (2005).

Equations (4.25)–(4.28) are solved in R positive and R negative separately, with
matching conditions that the radial velocity, Ar + ∂φ/∂R, is continuous across R =0,
while the pressure jumps by −[�p(x)−�p(0)]eik∗(s)x across R =0. The outer boundary
conditions are that Ax, Ar, Aθ , φ → 0 as R → ±∞. The system is marched downstream
from x = 0, with initial conditions Ax,r,θ = φ =0. A simple Euler routine for (4.25)–
(4.27) is used to march in x. At each x station, the Green’s function for (4.28)
can easily be found analytically, which provides a particular integral in terms of A
evaluated at the previous x station. The particular integral decays as R → ± ∞, and the
complementary solutions are adjusted to satisfy the velocity and pressure conditions
at R = 0. In this way the wake correction term can be calculated for arbitrary x > 0;
given the use of the inner radial scaling, it is localized around r = s. Note that,
although we have forced the unsteady pressure and the radial component of unsteady
velocity to be continuous across r = s, the axial and azimuthal components of unsteady
velocity in (4.23) and in this latest correction term are not continuous across r = s. This
discontinuity is the wake sheet of this particular problem, which exists downstream
of the trailing edge and at the convected wavelength.

We have now determined the total unsteady field as the sum of the incident dis-
turbance and its wall boundary layers, the scattered sonic field from the inner region
and the wake term described in the previous paragraph. Figure 9 shows the total
unsteady pressure field. The incident disturbance arrives from upstream outboard
of the splitter, and the requirements of continuous pressure in the fluid and the
imposition of the Kutta condition at the trailing edge produce the scattering shown.
For these parameter values we find 2, 12 and 12 cut-on sonic modes present in regions
I, II and III respectively, of which 1, 6 and 6 are downstream-travelling. In addition
to these sonic modes there is an infinite spectrum of nearly-convected modes and a
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Figure 9. The total unsteady pressure field for the scattering of the nearly-convected
disturbance at the trailing edge. The incident disturbance arrives from upstream in r � 0.7.
Conditions as in figure 8.

continuous spectrum, which contribute to the pressure and which are represented in
our asymptotic regime by the hydrodynamic terms in the scattered field. The incident
convected disturbance in the body of the flow, and its boundary layer on the outer
wall, continue downstream largely unaffected by the splitter, exactly as in figure 8.
The immediate vicinity of the trailing edge produces the acoustic response of cut-on
modes in all three regions. The presence of sonic modes propagating downstream in
region III, and upstream in region II, can be seen from the distortion of the incident
phase fronts of figure 8. In region I only sonic modes are present. Downstream of the
trailing edge there is a shed wake sheet on r = s, across which the tangential (axial
and azimuthal) disturbance velocities are discontinuous, but normal (radial) velocities
and the pressure in the fluid are continuous.

This overall picture of scattering driven by conditions on the pressure contrasts
with the uniform mean flow scenario. In the absence of mean vorticity the convected
disturbance has no associated pressure, and as a result would convect past the
trailing edge silently. However, the presence of mean vorticity means that the incident
hydrodynamic disturbance induces a pressure jump across the plate, so that acoustic
modes are scattered from the trailing edge to enforce the Kutta condition.

A final remark on the results of this section is that the large-|m| scattering solutions
in the four configurations (sonic or nearly-convected incident disturbance at leading
or trailing edge) can be combined to obtain the solution for a splitter of finite length.
For disturbances of asymptotically short wavelength the solution for a finite splitter
involves only repeated reflection and transmission of the propagating (the cut-on
sonic and the nearly-convected) modes at the two ends of the splitter, which is easily
performed using the results of the present analysis.

5. Concluding remarks
We mention first the energy balance of our system. The energy equation is

∂E

∂t
+ ∇ · I = u′ ·

(
U0 ∧

[
ρ0ξ

′ − p′

c2
0

ξ 0

])
(5.1)
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where ξ ′ = ∇ ∧ u is the disturbance vorticity,

E =
p′2

2ρ0c
2
0

+
ρ0u′2

2
+

p′

c2
0

u′ · U0 (5.2)

is the energy density and

I =

(
p′

ρ0

+ u′ · U0

)(
ρ0u′ +

p′

c2
0

U0

)
(5.3)

is the energy flux vector. Equation (5.1) is the appropriate special case of the energy
equation (1.87) of Goldstein (1976), i.e. for isentropic perturbations on a homentropic
flow and with no external volume sources of mass or momentum. Note that (5.1) has
source terms on the right-hand side as a direct consequence of the flow (mean and
unsteady) vorticity. The actual calculation of (say) the time-averaged axial energy flux
is complicated by the presence of mean vorticity, because the eigenvalue problem is
not self-adjoint and the modes are not orthogonal to each other. Let B be the vector
of mode amplitudes in a duct, as for instance in (2.30), then the time-averaged axial
energy flux down the duct is〈∫

Ixr dr dθ

〉
=

1

2
Re

∑
µ,ν

MµνBµB∗
ν e

i(αµ−α∗
ν )x. (5.4)

In (5.4) the angle brackets denote time average, and Mµν is the matrix of the inner
products of the µth and νth modes. In the absence of swirl the modes are orthogonal
and Mµν is diagonal, but that is not true here and the off-diagonal contributions
must be included. For each of our problems we have computed the time-averaged
axial energy flux at x = 0± using (5.4), including the contributions of the cut-off
sonic modes as these only decay far away from x =0. The axial energy flux has been
verified to be continuous across x =0 in each case, which provides a useful check on
the mutual consistency of the solutions in the various regions.

In this paper we have considered two distinct regimes, namely O(1) azimuthal mode
number, in which an exact solution has been presented for a specialized mean flow (§ 2
and § 3), and large azimuthal mode number, in which simplification and generalization
of this exact solution has been possible (§ 4). A number of comparisons between the
two regimes can be made:

(a) In both regimes an incident sonic disturbance scatters predominantly into sonic
modes, at both a leading and a trailing edge. The physics of this situation is very
similar to the scattering of acoustic waves in irrotational mean flow, with mode
selection in the scattered field depending in part on both the proximity of the incident
and scattered wavenumbers in the k-plane and on the spatial match between the
corresponding eigenfunctions. At a leading edge, scattered vortical hydrodynamic
disturbances (i.e. nearly-convected modes) are produced when m =O(1), which make
a small contribution to the unsteady pressure. This is in contrast to the case of
irrotational mean flow, where no extra vorticity is generated at the leading edge.

(b) At a leading edge the scattering of a nearly-convected disturbance shows some
differences between the two regimes. In the large-m case the scattered sonic field
dominates in the total unsteady pressure over all other terms (including over the
incident pressure field). In contrast, the results shown in figure 4 suggest that for
m =O(1) the nearly-convected scattered modes carry at least as much scattered
pressure as the sonic modes.
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(c) For the scattering of nearly-convected disturbances at a trailing edge, then for
both m =O(1) and m � 1 a sonic scattered field is produced whose magnitude is
proportional to the pressure jump of the incident field at the trailing edge. This
apparently general behaviour in a swirling flow contrasts with the case of irrotational
mean flow. Because the vorticity waves in an irrotational mean flow are pressure-free,
they need not scatter at a trailing edge to enforce a Kutta condition, and rather
just continue downstream into the wake. The production of a sonic field here is a
qualitatively different response.

One feature of rigid-body swirl with uniform axial flow is that it does not possess
a continuous spectrum of axial wavenumbers, which has allowed a number of
simplifications (including that the Wiener–Hopf function K(k) is meromorphic, so
that the infinite-product factorization can be used). In contrast, for m � 1 we were
able to complete an asymptotic analysis for arbitrary mean flows, with the continuous
spectrum, if present, being implicitly included within the down-marching of the nearly-
convected flow (equation (4.6)). Work on the continuous spectrum for m =O(1) is in
progress.

The authors are very grateful to Dr M. E. Goldstein for pointing out the analytical
solution to (4.6) which is given in Appendix B, and Dr A. J. Cooper for providing
computed data for the incident gust used in § 4.4.

Appendix A
In this appendix we present two methods used to factorize the Wiener–Hopf

kernel (2.29) in the form K(k) = K+(k)K−(k) with K±(k) analytic, non-zero and with
algebraic behaviour at infinity in the upper and lower halves of the complex-k-plane
respectively.

First, using the methods and results in Noble (1958), K±(k) are given via the explicit
integral formula

K±(k) = exp

(
±1

2πi

∫
Γ±

log K(ξ )

ξ − k
dξ

)
, (A 1)

where the contours Γ± run from −∞ to +∞ along the boundaries, Im(k) = ∓ δ, of the
overlapping upper and lower half-planes respectively. Evaluating (A 1) numerically
requires a little care, as the convergence of the integrals at ±∞ is slow and needs to be
monitored. Also, when the fictitious dissipation of the Wiener–Hopf technique is set
to zero all the nearly-convected and cut-on sonic modes give poles on the real axis,
and one must deform the integration contours away from all these poles to facilitate
accurate numerical integration.

Second, as an alternative factorization method, since K(k) is meromorphic it can
also be decomposed via infinite products. This method gives more insight into
the structure of K±(k), and provides an important check of the accuracy of the
numerical factorization (A 1). The poles and zeroes of the kernel function K(k) are
the eigenvalues in regions I, II and III, and we can immediately write

K±(k) =

√
K(0)e

1
2 kK ′(0)/K(0)e±χ (k)

(∏
µ

(
1 − k/α

∓
3µ

)
ek/α

∓
3µ

)
(∏

µ

(
1 − k/α

∓
1µ

)
ek/α

∓
1µ

) (∏
µ

(
1 − k/α

∓
2µ

)
ek/α

∓
2µ

) , (A 2)
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where the wavenumbers α
±
1µ,2µ,3µ are eigenvalues corresponding to regions I, II and

III respectively. For K+(k) the product is taken over all modes with label µ ∈ S−
a ,

and for K−(k) the product is taken over all modes with label µ ∈ S+
a ∪ Sc. Note that

all the nearly-convected modes lie in the UHP and so are not present in the formula
for K+(k). In (A 2) the exponential factors ek/α are necessary to ensure convergence of

the products and the factor e
1
2 kK ′(0)/K(0) ensures that K±(k) have the correct behaviour

for small k, see Noble (1958, p. 40) for full details.
The exponential term involving χ(k) is included in (A 2) so as to guarantee that the

factors behave algebraically at infinity. Using the methods on p. 128 of Noble (1958),
we find that to cancel the exponential behaviour of K+(k) as k → ∞ in the UHP,

χ(k) +
1

2
k
K ′(0)

K(0)
= k

(
log a

a
− log e

e
− log c

c

)

+ k

( ∞∑
µ=1

(
1

α−
3µ

+
1

aµ

)
−

∞∑
µ=1

(
1

α−
1µ

+
1

cµ

)
−

∞∑
µ=1

(
1

α−
2µ

+
1

eµ

))
. (A 3)

Here the coefficients a, e and c refer to the large-order behaviour of the cut-off
acoustic modes; specifically, a is given by (2.15) with σ = h, t =1; c with σ =h, t = s;
and e with σ = s, t =1. With this choice of χ(k), the behaviour of K−(k) in the LHP
will also be algebraic.

Finally, we can determine the algebraic behaviour of the factors at infinity by
noting that as k → ∞

K(k) ∼ (C|k|Λ(k))−1, (A 4)

where C = − 1
2

√
1 − U 2/c2

0(s). The function |k| is written as the product of factors

(k ± iε)1/2, which have branch cuts to infinity running along the negative and positive
imaginary axes respectively, and which are analytic and non-zero in the upper and
lower halves of the complex-k-plane respectively. The factor Λ(k) in (A 4) has a single
zero at k = kc, which corresponds to pure convection and lies in the upper half-plane.
Putting this information together, we see that K+(k) ∝ k−1/2 and K−(k) ∝ k−3/2 as
k → ∞.

Appendix B
The system of equations (4.6) was originally presented as equations (16)–(19) in

Cooper & Peake (2005). In this Appendix we give an analytical solution due to M. E.
Goldstein (private communication, 2005). In the notation of § 4 the full equations are

Ux

∂Ax

∂x
+

dUx

dr
Ar = −dUx

dr

dk∗

dr
ixΦ, (B 1)

Ux

∂Ar

∂x
− 2

Uθ

r
Aθ =

{
mΓ

r
+ k∗ dUx

dr

}
iΦ, (B 2)

Ux

∂Aθ

∂x
+ Γ Ar = −Γ

dk∗

dr
ixΦ, (B 3)

λ2Φ = i

{
x

dk∗

dr
Ar +

m

r
Aθ + k∗Ax

}
, (B 4)

where Γ =(1/r) d(rUθ )/dr , and λ2 = x2(dk∗/dr)2 + m2

r2 + k∗2
. Note that r appears only

as a parameter in these equations.
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To proceed we define the new variable

Y =
m

r
Aθ + k∗Ax, (B 5)

and combining (B 1), (B 2), (B 4) one obtains the following equation:

λ2Ux

∂

∂x

[(
Γ m

r
+ k∗ dUx

dr

)
Aθ − Γ Y

]
= 0, (B 6)

and hence

Aθ =
Γ Y

(Γ m/r + k∗dUx/dr)
+ f (r), (B 7)

where f (r) is an arbitrary function of radius determined by initial conditions. Now
substituting (B 7) into (B 2), and using (B 1), (B 2), (B 4) to eliminate Ar yields, after
some considerable manipulation,

U 2
x λ

2 ∂2Y

∂x2
+ 2U 2

x x

(
dk∗

dr

)2
∂Y

∂x
−

[(
Ux

dk∗

dr
+

Γ m

r
+ k∗ dUx

dr

)(
Γ m

r
+ k∗ dUx

dr

)

− 2
Uθ

r
Γ

(
m2

r2
+ k∗2

)]
Y = −2

Uθ

r

(
m2

r2
+ k∗2

)(
Γ m

r
+ k∗ dUx

dr

)
f (r). (B 8)

We now introduce the new independent variable

y = ix
dk∗

dr

(
m2

r2
+ k∗2

)−1/2

, (B 9)

for which (B 8) becomes

(1 − y2)Y ′′ − 2Y ′ + C(r)Y = F (r), (B 10)

where a prime now denotes a derivative with respect to y. Equation (B 10) is Legendre’s
equation in the variable y, the coefficient C(r) is given by

C(r) =
1

U 2
x (dk∗/dr)2

[(
Ux

dk∗

dr
+

Γ m

r
+ k∗ dUx

dr

)(
Γ m

r
+k∗ dUx

dr

)
−2

Uθ

r
Γ

(
m2

r2
+k∗2

)]
,

(B 11)

and

F (r) =
2Uθ

U 2
x (dk∗/dr)2r

(
m2

r2
+ k∗2

)(
Γ m

r
+ k∗ dUx

dr

)
f (r). (B 12)

The general solution for Y (y, r), from which A(x, r) and Φ(x, r) can be deduced, is
therefore

Y (y, r) =
F (r)

C(r)
+ α(r)P 0

ν (y) + β(r)Q0
ν(y), (B 13)

for some α(r) and β(r), where ν = ν(r) is a root of ν(ν + 1) = C(r) and P µ
ν , Qµ

ν are
the associated Legendre functions of the first and second kind.
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